• 文字サイズ変更
  • S
  • M
  • L

『 ロジック 』 内のFAQ

114件中 41 - 50 件を表示

5 / 12ページ
  • 【TI:ロジック】 SN74LV123Aのパーシャル・パワーダウン対応について

    /A, B, /CLR, Q, /Qの各端子は、パーシャル・パワーダウンに対応しています。 Rext/CextとCext端子は、パーシャル・パワーダウンに対応していません。 (SN74LV123Aの電源OFF時、正常な使い方であればRext/CextとCext端子に、 外部から電圧が印可されることはありませ... 詳細表示

    • No:3916
    • 公開日時:2019/08/06 17:33
    • 更新日時:2020/03/03 15:08
    • カテゴリー: ロジック
  • 【TI:ロジック】 SN74LV123Aの保護ダイオードについて

    【判断基準】 以下の式が成り立つとき、外付けダイオードによる保護が必要となります。 t < (Vcc x Ct) / 20mA t:電源電圧の立下り時間[ns] Vcc:電源電圧[V] Ct:タイミング・コンデンサ容量[pF] 電源OFFによってタイミング・コンデンサ内の電... 詳細表示

    • No:3914
    • 公開日時:2019/08/06 17:33
    • 更新日時:2020/02/04 16:15
    • カテゴリー: ロジック
  • 【TI:ロジック】 SN74LV123AのCext端子処理について

    SN74LV123AのCext端子は、チップ上でグランドに内部接続されていますので、 外部でGNDに接続しなくても動作はします。 しかし本デバイスは、Cext/Rext端子とCext端子の間に接続された、 タイミング・コンデンサの充・放電による電位変化を監視している半アナログ製品となりますので、 ... 詳細表示

    • No:3913
    • 公開日時:2019/08/06 17:32
    • 更新日時:2020/02/04 16:12
    • カテゴリー: ロジック
  • 【TI:ロジック】 SN74LV123Aの出力パルス誤差について

    データシートでは、比較的誤差の出にくい代表的な3種類の組み合わせについてパルス幅を記載しています。 パルス幅の誤差は、外付け部品に左右される特性である為残念ながら保証していません。 必ず実機で評価してください。 出典:SN74LV123Aデータシート REVISED AUGUST 2... 詳細表示

    • No:3912
    • 公開日時:2019/08/06 17:32
    • 更新日時:2020/02/04 16:11
    • カテゴリー: ロジック
  • 【TI:ロジック】 SN74LV123Aの外付けタイミング抵抗について

    タイミング抵抗(Rext)は、 Vcc = 2V時、5KΩ以上 Vcc ≧ 3V時、1KΩ以上 とデータシート上で規定されています。上限については、特に規定されていません。 Rext/Cext端子の入力電流の最大値は、Vcc = 5.5V時に±2.5uAと規定されています。 この... 詳細表示

    • No:3911
    • 公開日時:2019/08/06 17:32
    • 更新日時:2020/02/04 15:13
    • カテゴリー: ロジック
  • 【TI:ロジック】 SN74LV123Aの外付けタイミング・コンデンサの容量について

    タイミング・コンデンサ(Cext)の容量に関して特に規定はありません。 実装時の浮遊・寄生容量等で数pF~十数pF程度の変動は生じ得ますので、 これを考慮すると1,000pF以上のコンデンサでないと計算値との誤差が大きくなるものと考えます。 そのため、規定はありませんが1,000pF以上を目安に、値を選定い... 詳細表示

    • No:3910
    • 公開日時:2019/08/06 17:31
    • 更新日時:2020/02/04 15:10
    • カテゴリー: ロジック
  • 【TI︓ロジック】 CMOSのスロー入力の影響と貫通電流について

    ゆっくり変化する入力電圧は電源からグランドへ大量の電流を誘導する為、CMOS入力に大きな打撃を与えます。 この現象は貫通電流と言われます。 デバイスの内部電源ノードは集積回路全体の電圧リファレンスとして使用されるため、誘導電圧スパイク(VGND)は 信号が内部ゲート構造に影響を与えることがありま... 詳細表示

    • No:3776
    • 公開日時:2019/11/21 09:26
    • 更新日時:2020/04/14 14:32
    • カテゴリー: ロジック
  • 【TI︓ロジック】 Cpdについて

    CMOS回路では、電力の大部分がCMOSゲートの規制コンデンサ内の電荷を移動させる為に消費される為、動的消費電流は支配的となります。 この動的消費電流は、ICの内部容量と負荷容量の充放電電流によって決まります。 複数のゲートからなるCMOS回路の簡略化されたモデルは電源レール間で充電/放電される1つの大き... 詳細表示

    • No:3775
    • 公開日時:2019/11/21 09:25
    • 更新日時:2020/04/14 14:29
    • カテゴリー: ロジック
  • 【TI:ロジック】 電源投入時のバス・ホールド回路付き入力端子の状態について

    特にバイアスを与えずに電源を立ち上げた場合は、 H/Lどちらの論理が保持されるかは不定ですが、必ずH/Lどちらかの論理に確定します。 LVTHシリーズは、POWER UP 3STATE(PU3S)回路により、電源電圧(Vcc)が1.5Vになるまで出力はHi-Zとなっていますが、 内部のバス・... 詳細表示

    • No:3768
    • 公開日時:2019/07/26 09:19
    • 更新日時:2019/12/23 15:42
    • カテゴリー: ロジック
  • 【TI:ロジック】 SN74LV123Aのリトリガ動作の注意事項について

    1. リトリガの周期が短いとき SN74LV123Aに接続されたタイミング・コンデンサは、平常時Vcc電位に充電されています。 /A、Bおよび/CLRのトリガは、SN74LV123A内部のフリップフロップに入力される構造になっています。 トリガが入力されると、SN74LV123Aはチップ内でタイ... 詳細表示

    • No:3765
    • 公開日時:2019/07/26 09:24
    • 更新日時:2019/12/23 15:55
    • カテゴリー: ロジック

114件中 41 - 50 件を表示